

[4656] - 102

Seat	
No.	

F.E. (Semester – I) Examination, 2014 ENGINEERING CHEMISTRY (2012 Pattern)

Time : 2 Hours

Max. Marks : 50

Instructions : 1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.

- 2) Neat diagram must be drawn wherever necessary.
- 3) Figure to the **right** side indicate **full** marks.
- 4) Use of logarithmic table or electronic pocket calculator is allowed.
- 5) Assume suitable data if necessary.

1.	A)	Define scale and sludge. Give the causes, disadvantages and removal of scale and sludge formation in boiler.	6
	B)	State and derive Beer Lamberts law.	3
	C)	Define specific conductance, equivalent conductance and molar conductance. OR	3
2.	A)	Explain the pH metric titration of - mixture of weak acid - strong acid against std. alkali giving chemical reaction procedure with titration curve.	6
	B)	What are merits of green synthesis and demerits of traditional synthesis of indigo dye ?	3
	C)	A water sample is non alkaline to phenolphthalein indicator. However, 100 ml of the same sample on titration with 0.02 N H_2SO_4 requires 14.5 ml of acid to obtain end point using methyl orange indicator. Identify type of alkalinity and determine its extent.	3
	A)	Give preparation reaction, properties and uses of following polymers.a) LDPEb) Styrene - butadiene rubber	6
	B)	What is biodiesel ? Give its synthesis and advantages.	3
	C)	A gaseous fuel used in internal combusion engine contain $CH_4 = 45\%$, $H_2 = 30\%$, $CO = 20\%$, $N_2 = 5\%$ by volume. Find the minimum quantity (volume) of air required for complete combusion of 1 M ³ of gaseous fuel.	3

[4650	6] –	102	
4.	A)	Draw neat labelled diagram and give the construction, working of bomb calorimeter to determine GCV of a fuel.	6
	B)	Distinguish thermoplastic and thermosetting polymer with suitable example.	3
	C)	What is biodegradable polymer ? Give the structure of PHBV and its applications ?	3
5.	A)	Explain structure, properties and applications of fullerene.	5
	B)	Explain industrial production of hydrogen by steam reforming of methane and coke.	4
	C)	Explain the structure and properties of graphite.	4
		OR	
6.	A)	Give the isotopes of hydrogen with their applications and write the properties of hydrogen which makes it more difficult to store and transport.	5
	B)	What are the types of CNTs with respect to their structure ? Give the applications of CNTs.	4
	C)	Explain chemical storage method of hydrogen gas in the form of alanates and metal hydrides.	4
7.	A)	Define corrosion and explain effect of following factors on rate of corrosion	
		i) Purity of metal	
		ii) Relative area of anode and cathode.	5
	B)	State the types of oxide film formed on the surface of following metals with reactions.	
		1) Na 2) Al	
	\mathbf{C}	3) Au 4) Mo	4
	0)	What is cathodic coating ? Explain timing with neat labelled diagram to protect metal from corrosion.	4
		OR	-
8.	A)	Explain electrochemical corrosion by H_2 evolution and O_2 absorption mechanism.	5
		What is principle of cathodic protection and explain it with any one suitable method ?	4
	C)	Define electroplating. Explain electroplating process with neat labeled diagram and applications.	4

_

B/II/14/